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FISHER MARKET: EQUILIBRIUM & CONVEX OPTIMIZATION

A Fisher market consists of n buyers and m items. A market equilibrium (ME) is a set of allocations x∗ ∈ Rn×m+

and prices p∗ ∈ Rm+ satisfying the follwing conditions [1, 2, 3]

• Each buyer i get the maximum utility out of budget Bi:

x∗i ∈ arg max
{
ui(xi) : 〈p∗, xi〉 ≤ Bi, xi ∈ Rm+

}
.

• Each item j is sold, if price is nonzero:∑
ij

x∗ij ≤ 1 and p∗j > 0⇒
∑
i

x∗ij = 1, ∀ j.

Applications in ad auction, resource allocaiton and fair recommender systems require solving large-scale ME.

For many useful utility functions ui, ME can be captured by convex programs [4, 5, 6].

• Linear: ui(xi) = 〈vi, xi〉 (perfectly complementary goods):

(EG) max
∑
i

Bi log ui(xi) s.t.
∑
i

xij ≤ 1, ∀ j, x ≥ 0.

• Quasi-linear (QL): ui(xi) = 〈vi − p, xi〉 (price deducted). We gave the following convex program,
extending the Shmyrev’s convex program for linear ui [7, 8, 9], which is in buyers’ bids bij :

(S) min
b≥0
−

∑
i,j: vij>0

(1 + log vij)bij +
∑
j

pj(b) log pj(b) s.t.
∑
j

bij ≤ Bi, ∀ i, where pj(b) =
∑
i

bij .

• Leontief: ui(xi) = minj∈Ji
xij

aij
(perfectly substitute goods). EG also works for Leontief ui.

These convex programs have objectives that are not strongly convex nor Lipschitz continuous. For the latter,
we give new, tight bounds on equilibrium quantities utilizing properties of ME (assuming ‖B‖1 = 1, w.l.o.g.):

• Linear ui: Bi‖vi‖1 ≤ u∗i ≤ ‖vi‖1, maxi
vijBi

‖vi‖ ≤ p
∗
j ≤ 1.

• QL ui: maxi
vijBi

‖vi‖1+Bi
≤ p∗j ≤ maxi vij .

• Leontief ui: Bi‖ai‖∞ ≤ 〈ai, p∗〉 ≤ ‖ai‖∞.

FIRST-ORDER METHODS
The following standard form captures many convex programs for ME:

(P) min
x∈X

f(x) = h(Ax) + 〈q, x〉

where h is µ-strongly convex with L-Lipschitz gradient, and X is a polyhedral set. First-order methods (FOM)
can be used ot solve (P) [10]. Some of them are known to achieve linear convergence under various error-bound
conditions, i.e., “weakened strong convexity” conditions (e.g., [11, 12]).

• Projected Gradient (PG): xt+1 = ΠX (xt − γt∇f(x)).

• Mirror Descent (MD): xt+1 = arg minx∈X 〈∇f(xt), x− xt〉+ γtD(x||xt).

• Frank-Wolfe (FW): wt ∈ arg minw: a vertex ofX 〈∇f(xt), w〉, xt+1 = xt + γt(w
t − xt).

FOM FOR ME
We establish linear convergence of PG with a practical linesearch for general convex optimization problems
f(x) + g(x) satisfying the Proximal-PŁ condition, a receintly proposed error-bound condition [11].

With this and our new bounds on equilibrium quantities (see upepr left box), we establish linear convergence of
PG (with a static stepsize or linesearch) for solving (EG) and (S), via first reformulating them into (P).

For QL ui, adopting the analysis in [8], we show that mirror descent applied to (S) achieves a nonstandard
last-iterate 1/T convergence, where ϕ is the objective:

D(p(bt)‖p∗) ≤ ϕ(bt)− ϕ∗ ≤ log(m+ 1)

t
.

It also yields explicit updates similar to the Proportional Response Dynamics (PR) algorithm for finding ME under
linear ui [13, 8]. These updates are interpretable and highly scalable. At time t,

• Buyers submit their bids btij → item prices given by ptj =
∑
i b
t
ij → each buyer is allocated xtij = btij/p

t
j .

• Bids and leftover budgets are updated via bt+1
ij = Bi ·

vijx
t
ij∑

` vi`x
t
i`+δ

t
`

and δt+1
i = Bi · δti∑

` vi`x
t
i`+δ

t
`
.
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