

First-Order Methods for Large-Scale Market Equilibrium Computation Yuan Gao, Christian Kroer {gao.yuan, christian.kroer}@columbia.edu Columbia University, Department of Industrial Engineering and Operations Research

FISHER MARKET: EQUILIBRIUM & CONVEX OPTIMIZATION

A *Fisher market* consists of *n* buyers and *m* items. A market equilibrium (ME) is a set of allocations $x^* \in \mathbb{R}^{n \times m}_+$ and prices $p^* \in \mathbb{R}^m_+$ satisfying the following conditions [1, 2, 3]

• Each buyer *i* get the maximum utility out of budget B_i :

$$x_i^* \in \arg \max \left\{ u_i(x_i) : \langle p^*, x_i \rangle \le B_i, \ x_i \in \mathbb{R}_+^m \right\}.$$

• Each item *j* is sold, if price is nonzero:

$$\sum_{ij} x_{ij}^* \le 1 \text{ and } p_j^* > 0 \Rightarrow \sum_i x_{ij}^* = 1, \forall j.$$

Applications in ad auction, resource allocaiton and fair recommender systems require solving large-scale ME. For many useful utility functions u_i , ME can be captured by convex programs [4, 5, 6].

• Linear: $u_i(x_i) = \langle v_i, x_i \rangle$ (perfectly complementary goods):

(EG)
$$\max \sum_{i} B_i \log u_i(x_i) \text{ s.t. } \sum_{i} x_{ij} \leq 1, \forall j, x \geq 0.$$

• Quasi-linear (QL): $u_i(x_i) = \langle v_i - p, x_i \rangle$ (price deducted). We gave the following convex program, extending the Shmyrev's convex program for linear u_i [7, 8, 9], which is in buyers' bids b_{ij} :

(S)
$$\min_{b\geq 0} -\sum_{i,j: v_{ij}>0} (1+\log v_{ij})b_{ij} + \sum_j p_j(b)\log p_j(b) \text{ s.t. } \sum_j b_{ij} \leq B_i, \forall i, \text{ where } p_j(b) = \sum_i b_{ij}$$

• Leontief: $u_i(x_i) = \min_{j \in J_i} \frac{x_{ij}}{a_{ij}}$ (perfectly substitute goods). EG also works for Leontief u_i .

These convex programs have objectives that are not strongly convex nor Lipschitz continuous. For the latter, we give new, tight bounds on equilibrium quantities utilizing properties of ME (assuming $||B||_1 = 1$, w.l.o.g.):

- Linear $u_i: B_i ||v_i||_1 \le u_i^* \le ||v_i||_1, \max_i \frac{v_{ij}B_i}{||v_i||} \le p_j^* \le 1.$
- QL $u_i: \max_i \frac{v_{ij}B_i}{\|v_i\|_1 + B_i} \le p_j^* \le \max_i v_{ij}.$
- Leontief $u_i: B_i ||a_i||_{\infty} \leq \langle a_i, p^* \rangle \leq ||a_i||_{\infty}$.

FIRST-ORDER METHODS

The following standard form captures many convex programs for ME:

(P)
$$\min_{x \in \mathcal{X}} f(x) = h$$

where h is μ -strongly convex with L-Lipschitz gradient, and \mathcal{X} is a polyhedral set. First-order methods (FOM) can be used ot solve (P) [10]. Some of them are known to achieve linear convergence under various error-bound conditions, i.e., "weakened strong convexity" conditions (e.g., [11, 12]).

- Projected Gradient (PG): $x^{t+1} = \prod_{\mathcal{X}} (x^t \gamma_t \nabla f(x)).$
- Mirror Descent (MD): $x^{t+1} = \arg \min_{x \in \mathcal{X}} \langle \nabla f(x^t), x \rangle$
- Frank-Wolfe (FW): $w^t \in \arg\min_{w: a \text{ vertex of } \mathcal{X}} \langle \nabla f(x^t),$

 $l(Ax) + \langle q, x \rangle$

$$-x^{t}\rangle + \gamma_{t}D(x||x^{t}).$$
$$w\rangle, \ x^{t+1} = x^{t} + \gamma_{t}(w^{t} - x^{t}).$$

EX	P

800	
600	
400	
6000)
4000	
2000	

[1]	Ed: 195
[2] [3]	Edi Kai
[4]	Ch
[5]	Vin in f
[6]	Vin Cor
[7]	Vac
[8]	3(4 Ber
[9]	<i>con</i> Ric
[10]	ma An
[11]	Ha arX
[12]	Am
[13]	164 Li 2

FOM FOR ME

We establish *linear convergence* of PG with a practical linesearch for general convex optimization problems f(x) + g(x) satisfying the *Proximal-PŁ* condition, a receiptly proposed error-bound condition [11].

With this and our new bounds on equilibrium quantities (see upepr left box), we establish *linear convergence* of PG (with a static stepsize or linesearch) for solving (EG) and (S), via first reformulating them into (P).

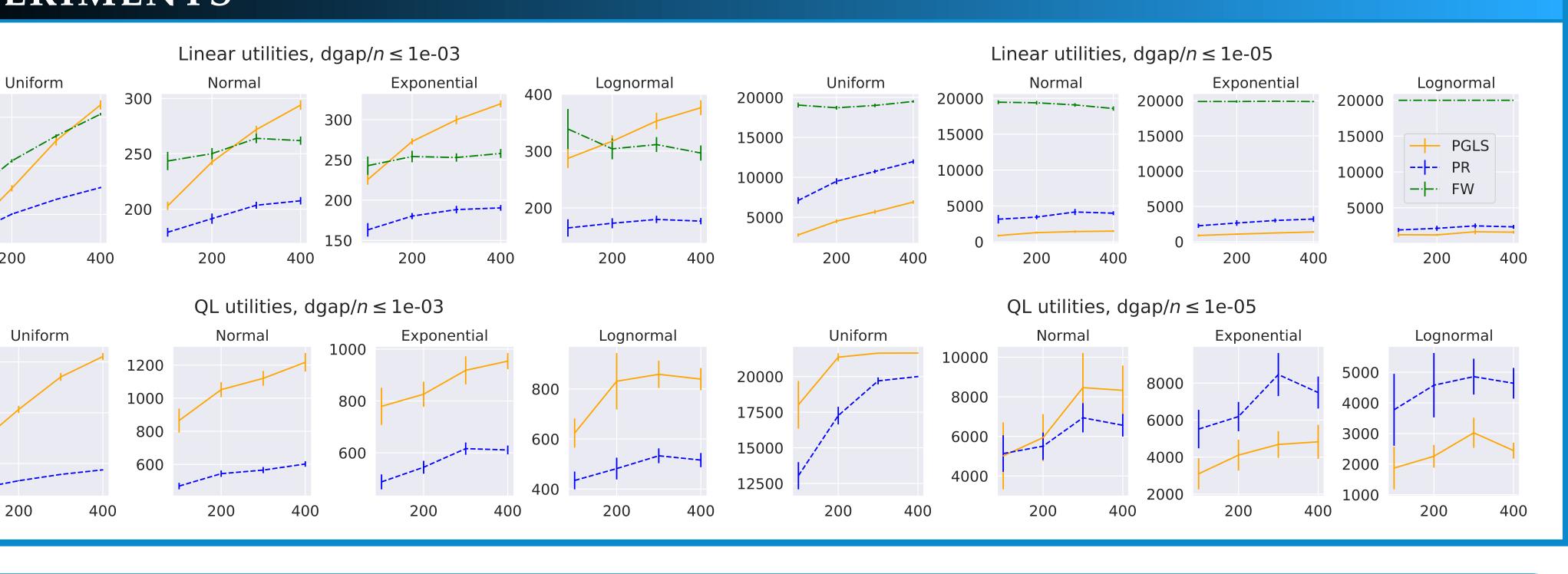
For QL u_i , adopting the analysis in [8], we show that mirror descent applied to (S) achieves a nonstandard last-iterate 1/T convergence, where φ is the objective:

 $D(p(b^t)||p^*) \le \varphi(b^t) - \varphi^* \le \frac{\log(m+1)}{t}.$

It also yields explicit updates similar to the *Proportional Response Dynamics* (PR) algorithm for finding ME under linear u_i [13, 8]. These updates are interpretable and highly scalable. At time t,

• Buyers submit their bids $b_{ij}^t \to \text{item}$ prices given by $p_j^t = \sum_i b_{ij}^t \to \text{each buyer is allocated } x_{ij}^t = b_{ij}^t / p_j^t$. • Bids and leftover budgets are updated via $b_{ij}^{t+1} = B_i \cdot \frac{v_{ij} x_{ij}^t}{\sum_{\ell} v_{i\ell} x_{i\ell}^t + \delta_{\ell}^t}$ and $\delta_i^{t+1} = B_i \cdot \frac{\delta_i^t}{\sum_{\ell} v_{i\ell} x_{i\ell}^t + \delta_{\ell}^t}$.

PERIMENTS



REFERENCES

Imund Eisenberg and David Gale. Consensus of subjective probabilities: The pari-mutuel method. The Annals of Mathematical Statistics, 30(1):165–168,

lmund Eisenberg. Aggregation of utility functions. *Management Science*, 7(4):337–350, 1961. *ference on Electronic commerce,* pages 127–136, 2011. chard Cole, Nikhil R Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani, and Sadra Yazdanbod. Convex program duality, fisher

nference on Web and Internet Economics, 2018. dim I Shmyrev. An algorithm for finding equilibrium in the linear exchange model with fixed budgets. Journal of Applied and Industrial Mathematics, L):505, 2009. njamin Birnbaum, Nikhil R Devanur, and Lin Xiao. Distributed algorithms via gradient descent for *Fisher* markets. In *Proceedings of the 12th ACM* arkets, and Nash social welfare. In 18th ACM Conference on Economics and Computation, EC 2017. Association for Computing Machinery, Inc, 2017.

mal Jain and Vijay V Vazirani. Eisenberg-Gale markets: Algorithms and game-theoretic properties. Games and Economic Behavior, 70(1):84–106, 2010. nristian Kroer and Alexander Peysakhovich. Scalable fair division for 'at most one' preferences. arXiv preprint arXiv:1909.10925, 2019. ncent Conitzer, Christian Kroer, Debmalya Panigrahi, Okke Schrijvers, Eric Sodomka, Nicolas E Stier-Moses, and Chris Wilkens. Pacing equilibrium first-price auction markets. In *Proceedings of the 2019 ACM Conference on Economics and Computation*. ACM, 2019. ncent Conitzer, Christian Kroer, Eric Sodomka, and Nicolás É Stier-Moses. Multiplicative pacing equilibria in auction markets. In International mir Beck. *First-order methods in optimization*, volume 25. SIAM, 2017. amed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient methods under the Polyak-Łojasiewicz condition. *Xiv preprint arXiv:1608.04636, 2016.* mir Beck and Shimrit Shtern. Linearly convergent away-step conditional gradient for non-strongly convex functions. Mathematical Programming, 4(1-2):1-27, 2017.

Zhang. Proportional response dynamics in the fisher market. *Theoretical Computer Science*, 412(24):2691–2698, 2011.

