# Constraining cosmology and baryonic physics via deep learning from weak lensing

## COLUMBIA UNIVERSITY DATA SCIENCE INSTITUTE

#### Introduction

The history, shape and constituents of our Universe can be described by the so-called  $\Lambda CDM$  cosmological model with a few parameters. One method to infer these parameters from astronomical observations is weak gravitational lensing (WL). WL is a general relativistic phenomenon which predicts that the shapes of distant galaxies appear distorted, because their light is bent as it passes through the inhomogeneous foreground Universe. We can measure the shapes of the galaxies, compute a resulting lensing convergence ( $\kappa$ ) map of the sky, and use it to infer the evolution and structure of the Universe.

In this work<sup>1</sup>, we expand our earlier work on deep learning<sup>2</sup> to extract information from  $\kappa$  maps. We investigate how deep learning performs in the presence of baryons<sup>1</sup>, which are distributed differently from the dominant dark matter component, and influence the small-scale lensing features.

#### **Methods**

- Generate 150,000  $\kappa$  maps with different cosmological and baryonic<sup>3</sup> parameters from N-body simulations.
- Noise is added to the  $\kappa$  maps according to the target galaxy number density.
- Build neural networks (with 10–40 convolution layers) predicting parameters from  $\kappa$  maps.
- Train the networks on the  $\kappa$  maps augmented with random rotation and translation (only half of the maps are used).
- of the  $\kappa$  maps.



predict cosmological and baryonic parameters

Tianhuan Lu<sup>1</sup>, Zoltán Haiman<sup>1</sup>, José Manuel Zorrilla Matilla<sup>2</sup> and Daniel Hsu<sup>3</sup> <sup>1</sup> Department of Astronomy, Columbia University <sup>2</sup> Department of Astrophysical Sciences, Princeton University <sup>3</sup>Department of Computer Science, Columbia University



Figure 1. (a) Large-scale structure of the universe from a simulation, (b) a mock weak lensing  $\kappa$  map.

best network at 20 galaxies/arcmin<sup>2</sup>

#### Results

With Bayesian inference, we sample posterior distribution of the the parameters with MCMC, which shows uncertainty of the inferred the parameters of the input fiducial model.

Our network achieves a 1.7x tighter constraint on the two cosmological <sub>w</sub> parameters ( $\Omega_m$ , the matter density, and  $\sigma_8$ , the matter fluctuation amplitude) for a future WL survey<sup>4</sup> with a 1,500 deg<sup>2</sup> sky area and a 20 gal/arcmin<sup>2</sup> galaxy density. Combing the predictions by the neural network with the  $\kappa$  power spectrum improves the cosmological constraint by a factor of ~2, and it also improves the estimation of the baryonic model.

### Conclusions

We have built a convolutional neural network to learn from weak lensing convergence maps and to predict the parameters of the  $\Lambda CDM$  cosmological model. We measure the performance of the network under the influence of uncertain baryonic effects, and we find that it performs 1.7x better in terms of the constraint in the  $\Omega_{\rm m} - \sigma_8$  parameter space. We also find this improvement to be stable across various galaxy number densities, which makes it a promising method for current and future lensing surveys.

#### Acknowledgments

We acknowledge support by NASA Astrophysics Theory Program grant 80NSSC18K1093, the use of the NSF XSEDE facility Stampede2, and the Columbia University High-Performance Computing cluster Ginsburg for simulations and data analysis in this study.

#### References

- 4.



| Method             | Area of $1\sigma$ c      |   |
|--------------------|--------------------------|---|
|                    | $\Omega_{ m m}-\sigma_8$ | Ι |
| Power spectrum     | 1.00                     |   |
| Peak counts        | 1.71                     |   |
| CNN                | 0.60                     |   |
| CNN+Power spectrum | 0.28                     |   |
|                    |                          |   |

Lu T., Haiman Z., Zorrilla Matilla J.M. 2022, MNRAS accepted

Gupta, A., Zorrilla, J. M., Hsu, D. & Haiman, Z. 2018, PRD, vol. 97, issue 10, id. 103515 Aricò, G., Angulo, R. E., Hernández-Monteagudo, C., et al. 2020, MNRAS, 495, 4800 Aihara, Hiroaki et al. 2018, PASJ, 70, S8

