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Next-generation wireless networks will utilize millimeter-wave O Balcony (Int), R height 15m . v | O el Pt, =Tx power
(mmWave) frequencies to achieve significantly higher data | @ Bridge (Bri),Rx height 6m ., f 0 "/ ooy Tk = 28 dBm
rates [1]. However, due to the high path loss at mmWave © Balcony (Bal), Rx height 15m /4 || T % Gy = Tx gain
frequencies, accurate channel measurement and modeling S L S /= N S by T 2 o = 23 dBi
for different deployment sites is required. We conducted an =0 ey ‘» NS e Gry = Rx gain
extensive mmWave channel measurement campaign with mtating Rx ) 7 * N Ry 30 x= 1 dB;
over 2,800 links on 24 sidewalks in the COSMOS testbed - N X0, ﬁfj};so" % pye = Noise Figure
deployment area in West Harlem, New York City between | v 10 NF =10 dB
March and August 2019, and Fall 2020. o PGpeg(d) = Median
Results on the measured path gains, the effective azimuth DA< ety ?dNBF; path gain, cor_n_puted

A from our empirical

beamforming gains, and the signal-to-noise ratio (SNR)

coverage are presented for various locations and settings.
These results can inform future COSMOS testbed 7 e e

Hez;tmap annotated with achievable data rates for Int path gain models.

e Using Tx and Rx gains and Tx power typical for a 28 GHz

development, including the deployment of IBM 28 GHz e e o | o , mmWave BS and user equipment, we can compute the SNR
phased array antenna modules [2] and provide a benchmark e Over 2,800 links measured across four different measurement sites, emulating different deployment with:  SNR(d) = Pryx + G1x + PGMed(d + Grx — PNF
for other deployments in dense urban environments. scenarios for a mm\Wave base station (BS): e Results can provide insights into the deployment of the IBM
* Int, overlooking a four-way intersection  Bal, a balcony overlooking a city park 28 GHz phased array antenna modules (PAAMSs) [2] that will
* Bri, a bridge overcrossing a two-way avenue * Roof, overlooking an overground subway track be integrated in the COSMOS testbed.
COSMOS Testbed e These four deployment scenarios represent common BS deployment sites in Manhattan and other cities. e Sufficient SNR coverage (>15 dB) up to ~160 m link distance
e Cloud enhanced Open Software defined MObile wireless e The measurement areas have sparse thin trees on both sides on the city streets, with 5-10 story concrete for all sidewalks.
testbed for city-Scale deployment (COSMOS) is a city- buildings, representative of Northeast U.S. cities.
scale programmable testbed for experimentation with )
advanced wireless technologies in New York City [3, 4]. Results — Different Measurement Sites Ongoing & Future Work

e COSMOS is a joint project involving Rutgers, Columbia, 70 - I _ — e More extensive measurements in the COSMOS testbed area,
and NYU along with several partner organizations sl ao bl n:I_”;jLObS; "4;)_2% | E?ftehct?j;”;é’ ac;rf]?(z:ni]hgoga(i?./(PTx'GEI) near Manhattanville and CCNY [6].
including New York City, CCNY, University of Arizona, a0 b= -659dB U”ﬁpi’iﬁgﬁl Gar(d)=max4{P(d, »Y Priom () e Conduct measurements to understand the effect of sidewalk
5 100 SRt Comen 105 | R L e clutter, such as vegetation, parked cars aqd ped_estrlans. -
T rrmas CAOTMSSSe  FreeSpace| | " nominal Gain 270° e Outdoor-to-indoor measurements to investigate building
g-or ,,12_4 08/ —-Int-NLOS penetration loss and indoor angular spread.
O-20 " h S : U_O_G_:SZ. € e Use the angular spectra recorded by the equipment to
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140l & Bri 10208 | 2100 user moves along a street.
asoll o B o | Uiban RootLOS n - ) 0.2 2 50 e Development and simulation of link and network-level
g ROOF-NLOS B ey e N ) Y — algor:thms fc;r bdee;m steering and scheduling, using power
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COSMOS’ computing architecture Aggregated E;f;ag:?:n(,r:gds for each cE:f:fC::f/:c:zr:::r;ifn?ii:]g(g?flr Top: power angular spectra for a LOS sidewalk ° Measurements_ of \_Nldeban,d channel characteristics and
deployment scenario each deployment scenario Bottom: power angular spectra for NLOS sidewalk channel dynamics using IBM’'s 28 GHz PAAMs [2].
Measurement Platform e We utilize a custormn-built L I\/Ie_asuremept results show that (i) Int-LOS (line-of-sight), Bri and Roof-L.OS have comparable path
S T 28 GHz portable narrow- gains, a.nd. (i) In-t-NLOS (nqn-LOS), Bal a_nd. Roof-NLOS have lower path gains.
,----¢-----;na;g----ffi°-r _____ s band  channel sounder e The majority of link path gain values fall within 3GPP urban canyon LOS and NLOS models [9].
i e e for measurements e Effective azimuth beamforming (BF) gain .is computed. as the r.atio_between the m_aximum power aqd the
L A O o The fransmitter (.Tx) < average power over all angles. A lower azimuth BF gain value implies greater environmental scattering.
; TR | Raspberry KT rost . . . e Links measured in Int-NLOS and Roof-NLOS experience higher scattering due to blockage in the NLOS
T e T equ!oed with an omni- cases, and possible reflections in Bri case, caused by two rows of buildings parallel to the link direction.
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