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Objective

Observe {xi}Ti=1 ∈ Rp, recover top-k (< p) sin-
gular vectors of the underlying subspace

Streaming PCA

•Noisy and adversarial environment
•Optimal storage and computation requirements

Noisy Power Method

•Power method with noisy observations [1]
•Algorithm:

• Observe a block B of data every iteration
• Compute covariance matrix of the observed block of data
• Multiply with orthonormal basis of previous iteration
• Obtain an estimate of the current orthonormal basis

•Convergence: Small spectral gap and stationarity

This work
Streaming PCA with noise and robustness

Frequent Directions

•Count-based sketching algorithm for computing
prominent singular vectors [2]

•Algorithm for computing top-k singular vectors
• Maintain 2k columns among which k are empty at the
beginning of every iteration

• Assign incoming columns to the empty columns
• Hard unweighted thresholding of singular values to sketch
top-k singular vectors and obtain k-empty columns

Key Idea
Noisy power method + Frequent directions++

Applications

•Portfolio Optimization, Market Structure, Grid
Operations, Econmetrics, Genomics

Robust Streaming PCA

•Observe {xi}Ti=1 and recover underlying subspace by performing computations on at most B vectors
•Spiked Covariance Model [3]: xt = Azt + wt

Robust Spiked Covariance Model

xt = Atzt + wt, ‖AtA
>
t − At−1A

>
t−1‖ ≤ γ, γ < 1

•At ∈ Rp×k, zi ∼ N (0k, Ik×k), wi ∼ N (0p, Ip×p), SV D(At) = UtΣtV
>
t

• zi and wi are mutually independent of each other and across time

Incorporating Robustness
Exponential smoothing of observed subspaces via sketching and singular value thresholding

Covariance of
block of data Noisy Power Method Frequent Directions++

Low-dimensional
representation
for this block

Key Results

Exponential Smoothing

Average subspace of matrices is spanned by left singular vectors of sum of corresponding projection matrices

Frequent Directions++
Maintain sketch of singular vectors through weighted thresholding of singular values every iteration

Convergence behaviour

Analysis of convergence behaviour of the proposed algorithm in presence of Robustness and noise

Recovery Error

•Distance between recovered and true subspace
•Recovery error decreases to γ1/3 as 1√

N
when

N < γ−2/3

•Recovery does not decrease beyond γ1/3 when
N > γ−2/3

Future Work

•Application of Oja’s Algorithm
•Sequential Hypothesis Tests
•Determination of γ
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