2D Convolutional Neural Network on FPGA for High-Resolution TPC Images

Lukas Arnold*, Luca Carloni, Giuseppe Di Guglielmo, Yeon-jae Jwa⁺ and Georgia Karagiorgi

Nevis Laboratories, Department of Physics & Department of Computer Science, Columbia University This material is based upon work supported in part by the National Science Foundation.

Intoduction: TPCs

- Liquid Argon Time Projection Chambers (LArTPCs) are a type of particle detector, significant for neutrino physics.
- ► Working principle for neutrino detection (see *figure* [1]):
- Basic structure of LArTPC consist of an anode and cathode plane, generating an electrical field within an area filled with liquid argon
- Neutrino interacts with liquid argon, creating charged particles
- Due to electrical field, ionization charge trail left behind by the charged particle drifts towards anode plane
- Differently oriented wires catch induced signals from charged particles
- Using these and drifttime, tracks of charged particles and neutrino can be recontructed

Data flow on FPGA

- Input image: 480 × 4488 (example on right with high-energy event [4])
 - Throughput: 200 images each 2.25ms
- Preprocessing: Downsizing to 64 × 64 pixel image
 - Denoising (zero suppression)
 - ▷ Different algorithms evaluated (see below)
- ► CNN
 - Classification of image into classes {background (NB), high-energy event (HE), low-energy event (LB)}

HE (nnbar)

- Current experiments:
 - ArgoNeuT, MicroBooNE, ProtoDUNE, ICARUS
- Experiments being built or proposed:
 - **DUNE Far Detector** (to be built in South Dakota), SBND, GRAMS

DUNE Far Detector

► Four modules (horizontal drift and

Preprocessing

- Different algorithms considered:
 Denoising + ROI identification +
 - ▷ Denoising + Ron identification + Cropping ([4], ≥ 500ms)
 ▷ Denoising + Cropping around maximum (significant information loss, ≤ 1ms)
 - Denoising + Summing (chosen, 20...60ms), 5% LUT usage
- Figure: Summing across multiple samples (upper image, requires large buffer space), and across channels only (lower image).

Convolutional Neural Network

- ► Evaluation and emulation using HLS4ML [5]
- Application of fixed-point quantization
- Very good accuracy results, no significant drop for quantization (see table and setup image)

- vertical drift)
- up to 200 cells (drift region) per module (see *figure* [2])
- ► **150** APAs (Anode Plane Assemblies)
- Each APA reads 2560 channels, including 2 × 480 collection channels

Supernova detection at DUNE

- Low-energy events, such as Supernova bursts or proton decay events, are hard to distinguish from noise
 - ▷ practically 100% efficiency needed
 - ▷ maximum 1 False Positive for
 - Supernova burst per month

→ deployment of sophisticated data selection algorithm, such as Convolutional Neural Network (CNN). Can we use CNN for data selection?

		und Sc	
Original	NB	LE	HE
$true_NB$	99.6%	0.4%	0%
$true_{-}LE$	3.8%	94.0%	2.2%
$true_HE$	3.2%	5.4%	91.4%
total accuracy		95.2%	
Quantized	NB	LE	HE
$true_NB$	99.7%	0.3%	0%
$true_{LE}$	3.9%	94.7%	1.4%
$true_HE$	3.3%	6.4%	90.4%
total accuracy		95.2%	

Implentation results

- Implementation of CNN (without preprocessing) onto Alveo FPGA made in collaboration with HLS4ML group [6].
- ► CNN Latency: $27.7 \mu s$ (emulation: $23.4 \mu s$)

Block RAM DSP Units Flip Flops Look-up tables

Kernel only	337kbit	2106	142k	139k	
Total	391kbit	2106	148k	141k	
Available	76Mbit	5.5k	1.3M	600k	

Front-end & Data Acquisition

► DUNE input data

▷ Data is read out continuously, and can be arranged into frames
 ▷ Data is buffered (≈ 10s) and selected data is sent for further processing
 ▷ 480 channels per collection plane × 2.25ms drift length / 2MHz sample frequency = 4488samples (at 12bit ADC resolution)
 → 11.5Gbps per collection plane (one side of APA)

Functionality of FPGA board: receive data, generate trigger primitives, select data, route data to CPU host

 target FPGA board for DUNE:
 ~75 FELIX boards [3] per module
 Xilinx Kintex Ultrascale FPGA XCKU115 (1.3M FF, 5.5k DSP) current demonstration board:
 Alveo U250 acceleration card
 Xilinx Ultrascale FPGA XCU250 (approx. double the FPGA resources of FELIX)

Conclusion

CNN evaluated using HLS4ML

- Preprocessing implemented & tested on Alveo
- CNN implemented on Alveo (testing ongoing)

► Next steps

▷ Test bench for implemented version with data from DUNE prototype
 ▷ Pre-processing and CNN exist as separate Alveo designs → integration
 ▷ (Long-term) Transfer implemention from Alveo to FELIX

CNN for DUNE Data Selection seems to be a viable option

References: [1] MicroBooNE Collaboration, Design and Construction of the MicroBooNE Detector, JINST 12 (2017) 02, [2] DUNE Collaboration, Far Detector Technical Design Report Vol. III, JINST 15 (2020) 08, [3] G. Karagiorgi, pres., Liquid Argon TPC Trigger Development with SBND, DPF 2019, [4] Y. Jwa, G. Di Guglielmo, L. Carloni, G. Karagiorgi, in: NYSDS 2019, [5] Y. Jwa, G. Di Guglielmo, L. Arnold, L. Carloni, G. Karagiorgi, Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle, arXiv 2201.05638, [6] J. Duarte, P. Harris, S. Hauck et al, Fast inference of deep neural networks in FPGAs for particle physics, JINST 13 (2018) 07.