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Our Problem

What are the approximation powers/limits of
depth-2 NNs

with randomly-choosen bottom layer weights?

Our Setting

Goal: Find a 2-layer random bottom-layer
(RBL) ReLU neural net that ε-approximates

L-Lipschitz f ∈ L2([−1, 1]d]) w.h.p.

I f belongs to L2([−1, 1]d ]) if ‖f ‖2 ≡
(∫

[−1,1]d f (x)2 dµ(x)
)1/2

<∞
I f is L−Lipschitz if for all x , x ′ ∈ [−1, 1]d ,

|f (x)− f (x ′)| ≤ L‖x − x‖2.
I A 2-layer random bottom-layer (RBL) ReLU neural net can be
written as

g(x) =
r∑

i=1
u(i)σ(〈w(i), x〉 − b(i)) for (w(i),b(i)) ∼ D

I g ε-approximates f if and only if ‖f − g‖2 =
√
E[(f − g)2(x)] ≤ ε

I MinWidthf ,ε,D is the smallest r such that with prob. 0.9 over
(w(i),b(i))i∈[r ], there exists an RBL g that ε-approximates f .

Our Contributions
We provide necessary and sufficient conditions to ε-approximate
an L-Lipschitz function f ∈ L2([−1, 1]d):
I MinWidthf ,ε,D is poly(d) if L/ε = Θ(1)
I MinWidthf ,ε,D is poly(L/ε) if d = Θ(1)
I MinWidthf ,ε,D is exp(Θ(d)) if L/ε = Θ(

√
d)

Previous Work on Width of Depth-2 NNs

Upper bounds
I Universal approx. theorem [Cybenko ’89, Funahashi ’89, HSW ’89].
I L2 approx. for bounded Fourier coefficients [Barron ’93].
I L2 approx. with width dO(L2/ε2) [APVZ ’14].
I L∞ approx. with width (L/ε)O(d) [Bach ’17].
Lower bounds
I exp(d) for Sobolev smooth with small ε [Maiorov ’99].
I exp(d) for poly(d)-Lipschitz using RBL nets [YS ’19, KMS ’20].

Our Results

I Qk,d =
∣∣∣∣{K ∈ Zd : ‖K‖2 ≤ k}

∣∣∣∣ =
(k2+d

d
)Θ(1)

Theorem (Upper Bound)

For any L, d , ε, there exists symmetric D such that for all
L-Lipschitz f ∈ L2([−1, 1]d) with |E[f ]| ≤ L:

MinWidthf ,ε,D ≤ QO(1)
2L/ε,d

Theorem (Lower Bound)

For any L, d , ε, and any symmetric D, there exists an
L-Lipschitz f (x) = sin(L〈u, x〉) such that:

MinWidthf ,ε,D = Ω
(
QL/18ε,d

)

Applications

Depth Separation
I Question from [SES ’19]: Are there 1-Lipschitz functions that
separate poly-size depth-2 NNs from poly-size depth-3 NNs?

I Our answer: Not for L2-approximation.
Learnability
I [MYSS ’21]: Hardness of approximation with depth-3 ⇒ hardness of
learning with any poly-size NN.

I Our bounds can strengthen statement to “hardness of
approximation with depth-2.”

Upper Bound Sketch

Every L-Lipschitz f can be ε-approximated by a trig.
polynomial of degree O(L/ε).

∃ symmetric Dk such that every k-degree trig.
polynomial P has MinWidthP ,ε,D = QO(1)

k,d .

Lower Bound Sketch

For orthonormal ϕ1, · · · , ϕN ∈ L2([−1, 1]d) and
N � r , then at least one ϕi will be

inapproximable by the span of r functions.

The family of
Fk = {x 7→

√
2 sin(π〈K , x〉) : ‖K‖2 ≤ k} contains

Θ(Qk,d) orthonormal Θ(k)-Lipschitz functions.

Full version
I For more details, explicit lower-bounds and replacing Lipschitzness
with Sobolev smoothness, check:

https://arxiv.org/abs/2102.02336

https://arxiv.org/abs/2102.02336

